Premium
Glial cells assemble hyaluronan‐based pericellular matrices in vitro
Author(s) -
Maleski Michael,
Hockfield Susan
Publication year - 1997
Publication title -
glia
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.954
H-Index - 164
eISSN - 1098-1136
pISSN - 0894-1491
DOI - 10.1002/(sici)1098-1136(199707)20:3<193::aid-glia3>3.0.co;2-9
Subject(s) - biology , in vitro , microbiology and biotechnology , neuroscience , computational biology , biochemistry
The extracellular matrix (ECM) of the brain contains hyaluronan and proteoglycans, as does the ECM of cartilage. Aggrecan, the major proteoglycan of cartilage, forms large aggregates with hyaluronan, which then associate with the chondrocyte cell surface through an interaction with surface hyaluronan binding proteins. In culture, chondrocytes elaborate hyaluronan‐proteoglycan aggregates, which form large hydrated pericellular matrices (PCMs) that can be visualized by a particle exclusion assay (Knudson and Toole: Dev Biol 112:308, 1985). It has recently been demonstrated that embryonic glial cells can also elaborate PCMs in culture (Deyst and Toole: Dev Brain Res 28:351, 1995). We demonstrate here that different classes of glial cells elaborate different types of endogenous PCMs in culture. Less differentiated glial cells, as evidenced by their immunoreactivity for nestin, elaborate larger endogenously produced PCMs than differentiated astrocytes, as defined by immunoreactivity for GFAP. This in vitro result may be a reflection of the larger volume of extracellular space present in the embryonic than in the mature brain. We show further that glial cells can incorporate cartilage aggrecan into their PCMs, and that both endogenous and aggrecan‐supplemented glial PCMs are dependent on hyaluronan. In contrast, primary neurons from newborn (P0) and P1 rat cortex neither express endogenous matrices nor can assemble exogenous hyaluronan/aggrecan aggregates into PCMs. These results suggest that immature neurons may not have the ability to assemble hyaluronan‐based PCMs, and they raise the possibility that neural proteoglycans associate with neuronal surfaces through a mechanism that may not directly involve hyaluronan. GLIA 20:193–202, 1997. © 1997 Wiley‐Liss, Inc.