z-logo
Premium
Calibrating space: Exploration is important for allothetic and idiothetic navigation
Author(s) -
Whishaw Ian Q.,
Brooks Brian L.
Publication year - 1999
Publication title -
hippocampus
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.767
H-Index - 155
eISSN - 1098-1063
pISSN - 1050-9631
DOI - 10.1002/(sici)1098-1063(1999)9:6<659::aid-hipo7>3.0.co;2-e
Subject(s) - path integration , computer science , sensory cue , computer vision , turn by turn navigation , artificial intelligence , human–computer interaction , mobile robot , robot , robot control
Allothetic and idiothetic navigation strategies rely on very different cues and computational procedures. Allothetic navigation uses the relationships between external cues (visual, auditory, and olfactory) and mapping or geometrical calculations to locate places. Idiothetic navigation relies on cues generated by self‐movement (proprioceptive cues or cues from optic, auditory, and olfactory flow, or efference copy of motor commands) and path integration to locate a present location and/or a starting point. Whereas it is theorized that exploratory behavior is used by animals to create a central representation of allothetic cues, it is unclear whether exploration plays a role in idiothetic navigation. Computational models suggest that either a reference frame, calibrated by exploration, or vector addition, without reference to exploration, could support path integration. The present study evaluated the contribution of exploration in these navigation strategies by comparing its contribution to the solution of both allothetic and idiothetic navigation problems. In two experiments, rats were trained to forage on an open table for large food pellets, which they then carried to a refuge to eat. Once trained, they were given probe trials from novel locations in either normal light, which permits the use of allothetic cues, or in infrared light, which requires the use of idiothetic cues. When faced with a new problem in either lighting condition, the rats first explored the foraging table before navigating directly home with the food. That exploration is equally important for allothetic and idiothetic navigation, suggests that both navigation strategies require a calibrated representation of the environment. Hippocampus 1999;9:659–667. © 1999 Wiley‐Liss, Inc.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here