z-logo
Premium
Locomotion in the quail ( Coturnix japonica ): the kinematics of walking and increasing speed
Author(s) -
Reilly Stephen M.
Publication year - 2000
Publication title -
journal of morphology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.652
H-Index - 74
eISSN - 1097-4687
pISSN - 0362-2525
DOI - 10.1002/(sici)1097-4687(200002)243:2<173::aid-jmor6>3.0.co;2-e
Subject(s) - stride , quail , kinematics , ankle , anatomy , biology , hindlimb , preferred walking speed , treadmill , gait , femur , knee joint , joint (building) , physical medicine and rehabilitation , medicine , physics , surgery , endocrinology , structural engineering , engineering , physiology , paleontology , classical mechanics
ABSTRACT Hindlimb segmental kinematics and stride characteristics are quantified in several quail locomoting on a treadmill over a six‐fold increase in speed. These data are used to describe the kinematics of a walking stride and to identify which limb elements are used to change stride features as speed increases. In quail, the femur does not move during locomotion and the tarsometatarsus–phalangeal joint is a major moving joint; thus, quail have lost the most proximal moving joint and added one distally. The tibiotarsus and tarsometatarsus act together as a fixed strut swinging from the knee during stance phase (the ankle angle remains constant at a given speed) and the tarsometatarsus–phalangeal joint appears to have a major role in increasing limb length during the propulsive phase of the stride. Speed is increased with greater knee extension and by lengthening the tibiotarsus/tarsometatarsus via increased ankle extension at greater speeds. Because the femur is not moved and three distal elements are, quail move the limb segments through a stride and increase speed in a way fundamentally different from other nonavian vertebrates. However, the three moving joints in quail (the knee, ankle, and tarsometatarsophangeal joint) have strikingly similar kinematics to the analogous moving joints (the hip, knee, and ankle) in other vertebrates. Comparisons to other vertebrates indicate that birds appear to have two modes of limb function (three‐ and four‐segment modes) that vary with speed and locomotory habits. J. Morphol. 243:173–185, 2000 © 2000 Wiley‐Liss, Inc.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here