Premium
Rate constants of acetylcholine receptor internalization and degradation in mouse muscles
Author(s) -
Xu Rufeng,
Salpeter Miriam M.
Publication year - 1999
Publication title -
journal of cellular physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.529
H-Index - 174
eISSN - 1097-4652
pISSN - 0021-9541
DOI - 10.1002/(sici)1097-4652(199910)181:1<107::aid-jcp11>3.0.co;2-9
Subject(s) - internalization , acetylcholine receptor , acetylcholine , reaction rate constant , biophysics , receptor , chemistry , degradation (telecommunications) , compartment (ship) , biology , biochemistry , kinetics , endocrinology , telecommunications , physics , oceanography , quantum mechanics , geology , computer science
The rate constants for internalization and subsequent extrusion of acetylcholine receptors (AChRs) during degradation in adult innervated and denervated mouse diaphragm muscles were determined using proteinase K (PK) digestion. This procedure separated 125 I‐α‐bungarotoxin (Bgt)‐labeled AChRs into PK‐sensitive and PK‐resistant compartments. The time course of the residual radioactivity in these two compartments suggested that they represented surface membrane and internalized compartments, respectively. The data were compatible with a mathematical model based on the assumption that during degradation of AChRs a surface compartment, A, fed an internal compartment, B, with an internalization rate constant ( k i ), and that B is drained from the cell with an extrusion rate constant ( k o ). Using the mathematical model, we were able to determine that k i and k o were, respectively, 0.068 (t 1/2 ∼ 10.2 days) and 0.69–0.55 (t 1/2 ∼ 1.0– 1.25 days) for innervated muscle and were, respectively, 0.69 (t 1/2 ∼ 1.0 day) and 6.93 (t 1/2 ∼ 0.1day) for denervated muscle. Thus, the rate for internalization was about 8–10 times slower than that for extrusion from the cell for both the slowly degrading innervated (Rs) AChRs and for the rapidly degrading denervated (Rr) AChRs. This inequality betweeen k i and k o therefore allows the combined quantity of A(t) + B(t) , usually measured in AChR degradation studies, to approximate a single exponential. J. Cell. Physiol. 181:107–112, 1999. © 1999 Wiley‐Liss, Inc.