z-logo
Premium
In vitro changes in plasma membrane heparan sulfate proteoglycans and in perlecan expression participate in the regulation of fibroblast growth factor 2 mitogenic activity
Author(s) -
Guillonneau Xavier,
Tassin Jacqueline,
Berrou Eliane,
Bryckaert Marijke,
Courtois Yves,
Mascarelli Frédéric
Publication year - 1996
Publication title -
journal of cellular physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.529
H-Index - 174
eISSN - 1097-4652
pISSN - 0021-9541
DOI - 10.1002/(sici)1097-4652(199601)166:1<170::aid-jcp19>3.0.co;2-j
Subject(s) - fibroblast growth factor , receptor , perlecan , heparan sulfate , microbiology and biotechnology , biology , fgf1 , chemistry , biochemistry , fibroblast growth factor receptor , cell
Fibroblast growth factor 1 (FGF1) and 2 (FGF2) bind to two classes of receptors: the high affinity receptors, a family of four known transmembrane tyrosine kinases (FGF R1‐R4), and the low affinity receptors, cell surface and basement membrane heparan sulfate proteoglycan (HSPG). During early (first and second) passages of retinal pigmented epithelial (RPE) cells, both FGF1 and FGF2 exhibited low mitogenic activity, while in later (fifth to ninth) passages the activity of FGF1 remained constant but FGF2 activity increased two‐ to threefold. We have investigated aspects of FGF receptor interactions and the role of heparin/heparan sulfate which modulates FGF activity on RPE cells during in vitro senescence. Northern blot analysis demonstrated that FGF receptor type 1 (FGF R1) is the major high affinity receptor expressed in RPE cells and that its level of expression did not change during serially passage. Both the FGF R1 and the FGF low affinity receptors' binding characteristics (i.e., Kd and number of sites per cell) for FGF1 were unaffected by passage number, whereas the capacity of FGF2 binding to FGF R1 and to the low affinity receptors increased by two‐ and fivefold, respectively, in late passages, although the affinities were unchanged. This change in the capacity of FGF2 to bind to FGF R1 and to HSPG was not due to a switch of all the IIIc splice form of FGF R1 to the IIIb splice form since the exon IIIc was the most predominant splice form of FGF R1 during RPE cell cultures. Furthermore the ratio of the IIIb to the IIIc splice form was not modified during cell subcultures. In parallel in the older RPE cell passages, expression of perlecan, the major FGF low affinity binding site localized on the extracellular matrix of RPE cells, was much elevated compared to early RPE cell passages. Moreover, the cell surface of late passage RPE cells had 79% more HSPG than early passage cells. Therefore, it is suggested that the increase in the number of FGF low affinity receptors present on the cell surface or basement membrane could account for a part of the greater proliferative response of aged RPE cells to FGF2. © 1996 Wiley‐Liss, Inc.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here