z-logo
Premium
Evaluation of surface energy of solid polymers using different models
Author(s) -
Shimizu Renato Norio,
Demarquette Nicole Raymonde
Publication year - 2000
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/(sici)1097-4628(20000620)76:12<1831::aid-app14>3.0.co;2-q
Subject(s) - diiodomethane , contact angle , surface energy , polystyrene , materials science , surface tension , polymer , sessile drop technique , thermodynamics , polymer chemistry , composite material , physics
In the present work, contact angles formed by drops of diethylene glycol, ethylene glycol, formamide, diiodomethane, water, and mercury on a film of polypropylene (PP), on plates of polystyrene (PS), and on plates of a liquid crystalline polymer (LCP) were measured at 20°C. Then the surface energies of those polymers were evaluated using the following three different methods: harmonic mean equation and geometric mean equation, using the values of the different pairs of contact angles obtained here; and Neumann's equation, using the different values of contact angles obtained here. It was shown that the values of surface energy generated by these three methods depend on the choice of liquids used for contact angle measurements, except when a pair of any liquid with diiodomethane was used. Most likely, this is due to the difference of polarity between diiodomethane and the other liquids at the temperature of 20°C. The critical surface tensions of those polymers were also evaluated at room temperature according to the methods of Zisman and Saito using the values of contact angles obtained here. The values of critical surface tension for each polymer obtained according to the method of Zisman and Saito corroborated the results of surface energy found using the geometric mean and Neumann's equations. The values of surface energy of polystyrene obtained at 20°C were also used to evaluate the surface tension of the same material at higher temperatures and compared to the experimental values obtained with a pendant drop apparatus. The calculated values of surface tension corroborated the experimental ones only if the pair of liquids used to evaluate the surface energy of the polymers at room temperature contained diiodomethane. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 76: 1831–1845, 2000

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here