z-logo
Premium
Chitosan microspheres and sponges: Preparation and characterization
Author(s) -
Denkbaş Emir Baki,
Odabaşi Mehmet
Publication year - 2000
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/(sici)1097-4628(20000613)76:11<1637::aid-app4>3.0.co;2-q
Subject(s) - glutaraldehyde , chitosan , swelling , sponge , acetic acid , microsphere , materials science , polymer chemistry , solvent , chemical engineering , nuclear chemistry , chemistry , chromatography , composite material , organic chemistry , engineering , botany , biology
Abstract In this study, chitosan microspheres and sponges were prepared and characterized for diverse biomedical applications successfully. The chitosan microspheres were obtained with a “suspension crosslinking technique” in the size range of 30–700 μm. The stirring rate of the suspension medium and the chitosan/acetic acid ratio, emulsifier, and crosslinker, that is, the glutaraldehyde concentration in the suspension medium, were evaluated as the effective parameters on the size/size distributions of the microspheres. The microsphere size/size distributions were increased with the decreasing of all effective parameters except the chitosan/acetic acid ratio. In the second part of the study, chitosan sponges were prepared with a solvent‐evaporation technique and sponges were cross‐linked either during the formation or after the formation of sponges by using a cross‐linker, that is, glutaraldehyde. When the sponges were crosslinked during the formation, fibrillar structures were obtained, while the leaflet structures were obtained in the case of crosslinking after the formation of sponges. In the last part of the study, the swelling behavior of both the chitosan microspheres and sponges were evaluated using different amounts of the crosslinker. The swelling ratio was increased in both types of structures, that is, microspheres and sponges, by decreasing the amount of the crosslinker. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 76: 1637–1643, 2000

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here