z-logo
Premium
An investigation of vinyl–esterstyrene bulk copolymerization cure kinetics using Fourier transform infrared spectroscopy
Author(s) -
Brill Russell P.,
Palmese Giuseppe R.
Publication year - 2000
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/(sici)1097-4628(20000606)76:10<1572::aid-app12>3.0.co;2-c
Subject(s) - styrene , copolymer , double bond , polymer chemistry , monomer , vinyl ester , fourier transform infrared spectroscopy , materials science , kinetics , chemistry , polymer , chemical engineering , composite material , physics , quantum mechanics , engineering
A Fourier transform infrared (FTIR) spectroscopy technique was developed to investigate the effects of reaction temperature and reactant composition on the isothermal curing kinetics of commercial vinyl nester resins comprised of vinyl–ester monomer (dimethacrylate of diglycidyl ether of bisphenol A DGEBA) and styrene. This technique enables a more complete evaluation of the bulk copolymerization reaction of vinyl–esterstyrene systems by monitoring the depletion of vinyl–ester and styrene double bonds independently. The results indicate that the rate of fractional conversion of styrene double bonds is initially less than that of vinyl–ester vinyl groups. However, styrene monomer continues to react after conversion of vinyl–ester double bonds has ceased. In addition, the overall extent of conversion was found to increase with increasing isothermal cure temperature, and it was observed that higher styrene concentration enhances final conversion of vinyl–ester double bonds and not styrene double bonds. Increasing styrene monomer concentration also resulted in lowering the apparent activation energy for the reaction of vinyl groups from both monomers as characterized by an empirical autocatalytic model used to fit the conversion results for styrene and vinyl–ester double bonds independently. The results of this work demonstrate that reaction temperature and resin composition significantly affect the cure behavior of vinyl–ester resins and provide insight into the development of the resulting network structure. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 76: 1572–1582, 2000

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here