Premium
Mechanical properties and morphology of polyethylene–polypropylene blends with controlled thermal history
Author(s) -
Li Jun,
Shanks Robert A.,
Long Yu
Publication year - 2000
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/(sici)1097-4628(20000516)76:7<1151::aid-app19>3.0.co;2-h
Subject(s) - linear low density polyethylene , crystallinity , materials science , polyethylene , differential scanning calorimetry , polypropylene , spherulite (polymer physics) , composite material , polymer blend , high density polyethylene , ultimate tensile strength , scanning electron microscope , low density polyethylene , crystallization , polymer chemistry , polymer , chemical engineering , copolymer , physics , engineering , thermodynamics
The effect of time–temperature treatment on the mechanical properties and morphology of polyethylene–polypropylene (PE–PP) blends was studied to establish a relationship among the thermal treatment, morphology, and mechanical properties. The experimental techniques used were polarized optical microscopy with hot‐stage, scanning electron microscopy (SEM), differential scanning calorimetry (DSC), and tensile testing. A PP homopolymer was used to blend with various PEs, including high‐density polyethylene (HDPE), low‐density polyethylene (LDPE), linear low‐density polyethylene (LLDPE), and very low density polyethylene (VLDPE). All the blends were made at a ratio of PE:PP = 80:20. Thermal treatment was carried out at temperatures between the crystallization temperatures of PP and PEs to allow PP to crystallize first from the blends. A very diffuse PP spherulite morphology in the PE matrix was formed in partially miscible blends of LLDPE–PP even though PP was present at only 20% by mass. Droplet‐matrix structures were developed in other blends with PP as dispersed domains in a continuous PE matrix. The SEM images displayed a fibrillar structure of PP spherulite in the LLDPE–PP blends and large droplets of PP in the HDPE–PP blend. The DSC results showed that the crystallinity of PP was increased in thermally treated samples. This special time–temperature treatment improved tensile properties for all PE–PP blends by improving the adhesion between PP and PE and increasing the overall crystallinity. In particular, in the LLDPE–PP blends, tensile properties were improved enormously because of a greater increase in the interfacial adhesion induced by the diffuse spherulite and fibrillar structure. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 76: 1151–1164, 2000