Premium
Synthesis of macromonomer from radical polymerization of styrene with a polymerizable photoiniferter
Author(s) -
Qin ShuHui,
Qiu KunYuan
Publication year - 2000
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/(sici)1097-4628(20000314)75:11<1350::aid-app5>3.0.co;2-j
Subject(s) - macromonomer , polymer chemistry , styrene , polystyrene , polymerization , copolymer , radical polymerization , materials science , molar mass distribution , polymer , chemistry , composite material
α‐(Methacrylyoxylethyloxycarbonylmethyl)‐ω‐( N , N ‐diethyldithiocarbamyl)polystyrene macromonomers with different molecular weights were prepared by radical polymerization of styrene (St) using β‐methacryloxylethyl 2‐ N , N ‐diethyldithiocarbamylacetate (MAEDCA) as a polymerizable photoiniferter in toluene under ultraviolet light. The polymerization of St with MAEDCA carried out by a “living” process; that is, both the yield and the molecular weight of the resultant polymers increased with increasing of reaction time, and the resultant polymer was a macromonomer, for example, α‐(methacrylyoxylethyloxycarbonylmethyl)‐ω‐( N , N ‐diethyldithiocarbamyl)polystyrene, designated as PSt‐macromonomer. The molecular weight of the PSt‐macromonomer depended on the concentrations of the polymerizable photoiniferter and St, as well as the conversion of St. The PSt‐macromonomer can copolymerize with MMA initiated by AIBN at 65°C to form a graft copolymer (PMMA‐ graft ‐PSt) with PSt branches randomly distributed along the PMMA backbone. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 75: 1350–1356, 2000