Premium
Kinetics of diethylene glycol formation from bishydroxyethyl terephthalate with proton catalyst in the preparation of poly(ethylene terephthalate)
Author(s) -
Chen LeoWang,
Chen JongWu
Publication year - 2000
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/(sici)1097-4628(20000307)75:10<1221::aid-app2>3.0.co;2-w
Subject(s) - diethylene glycol , ethylene glycol , monomer , polymer chemistry , kinetics , catalysis , ethylene , chemistry , reactivity (psychology) , dimethyl terephthalate , polymer , organic chemistry , medicine , physics , alternative medicine , pathology , quantum mechanics
This research focused on the kinetics of diethylene glycol (DEG) formation from the bishydroxyethyl terephthalate (BHET) monomer with a proton catalyst. In this study, the effect of proton concentration and of reaction temperature on DEG formation are discussed. Also, the rate equation of DEG formation from the BHET monomer with a proton catalyst is described. It was found that, as far as kinetics is concerned, the reactivity of the hydroxyl end groups of BHET with protons is greater than that of ethylene glycol (EG) with protons in DEG formation. In addition, the activation energy of BHET with protons is much lower than that of BHET with itself, that is, as protons emerge during the process of PET synthesis from BHET, they catalyze DEG formation. This study provides additional kinetics data to that described in our studies previously published (J Polym Sci Polym Chem Ed 1998, 36, 3073; 1998, 36, 3081). © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 75: 1221–1228, 2000