Premium
Recycling of commingled plastics by cellulosic reinforcement
Author(s) -
Ha ChangSik,
Park HaeDong,
Cho WonJei
Publication year - 1999
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/(sici)1097-4628(19991107)74:6<1531::aid-app27>3.0.co;2-v
Subject(s) - materials science , maleic anhydride , high density polyethylene , polypropylene , thermal stability , polyethylene , cellulose , composite material , copolymer , thermogravimetric analysis , vinyl chloride , polymer blend , chemical engineering , polymer , engineering
In this article, a model study was conducted on the effect of combining cellulose on the properties of virgin and/or recycled commingled plastics with a simulated waste‐plastics fraction composed of high‐density polyethylene (HDPE), polypropylene (PP), polystyrene (PS), and poly(vinyl chloride) (PVC) (PE/PP/PS/PVC = 7/1/1/1 by weight ratio). The compatibilizing effect of maleic anhydride‐grafted styrene–ethylene/butylene–styrene block copolymer (SEBS‐ g ‐MAH) for the cellulose‐reinforced commingled blends was also investigated. Commingled blends were prepared in a table kneader internal mixer. Mechanical properties were measured by using a universal testing machine. Thermal stability was measured by a thermogravimetric analyzer. It was found that the addition of more than 12.5% cellulose into the commingled blends was effective to enhance the mechanical properties of the virgin and recycled blends. The thermal stability as well as the mechanical properties of the commingled blends were much improved by the reactive blending of cellulose with the commingled blends by peroxide and maleic anhydride. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 74: 1531–1538, 1999