z-logo
Premium
Influences of chlorinated polyethylene and oxidized polyethylene on the fusion of rigid poly(vinyl chloride) compounds
Author(s) -
Chen ChengHo,
Lo YuWen
Publication year - 1999
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/(sici)1097-4628(19991017)74:3<699::aid-app24>3.0.co;2-l
Subject(s) - calcium stearate , stearate , polyethylene , vinyl chloride , fusion , lubricant , polyvinyl chloride , materials science , chemical engineering , polymer chemistry , composite material , chemistry , organic chemistry , copolymer , polymer , raw material , linguistics , philosophy , engineering
Fusion time, fusion temperature, and fusion torque of poly(vinyl chloride) (PVC) compounds with various components were studied in this article. Influences of chlorinated polyethylene (CPE), oxidized polyethylene (OPE), and calcium stearate on fusion characteristics of PVC compounds were illustrated. The synergistic reaction among CPE, OPE, and calcium stearate forms a powerful and effective processing aid that allows the PVC particles to fuse more quickly and uniformly. In PVC/CPE compounds, a higher concentration of CPE can function like a processing aid and help PVC particles to fuse together easily. Meanwhile, the interaction between a higher concentration of OPE and calcium stearate in PVC/OPE compounds can promote the PVC particles to fuse together easily in the beginning of the fusion process. However, the external lubricant property of OPE still exists and results in more intact PVC microparticles not fused. The fusion temperature of the PVC in a Haake mixing bowl increases as the fusion time increases. On the other hand, the fusion torque decreases as the fusion time increases. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 74: 699–705, 1999

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here