z-logo
Premium
Structure and physical properties of silk fibroin/polyacrylamide blend films
Author(s) -
Freddi Giuliano,
Tsukada Masuhiro,
Beretta Silvia
Publication year - 1999
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/(sici)1097-4628(19990307)71:10<1563::aid-app4>3.0.co;2-e
Subject(s) - fibroin , materials science , polyacrylamide , thermal stability , crystallization , polymer chemistry , polymer , composite material , polymer blend , hydrogen bond , silk , dynamic mechanical analysis , fourier transform infrared spectroscopy , chemical engineering , copolymer , chemistry , molecule , organic chemistry , engineering
This article deals with the characterization of blend films obtained by mixing silk fibroin (SF) and polyacrylamide (PAAm). The DSC curves of SF/PAAm blend films showed overlapping of the main thermal transitions characteristic of the individual polymers. The exothermic peak at 218°C, assigned to the β‐sheet crystallization of silk fibroin, slightly shifted to a lower temperature by blending. The weight‐retention properties (TG) of the blend films were intermediate between those of the two constituents. The TMA response was indicative of a higher thermal stability of the blend films, even at low PAAm content (≤25%), the final breaking occurring at about 300°C (100°C higher than pure SF film). The peak of dynamic loss modulus of silk fibroin at 193°C gradually shifted to lower temperature in the blend films, suggesting an enhancement of the molecular motion of the fibroin chains induced by the presence of PAAm. Changes in the NH stretching region of silk fibroin were detected by FTIR analysis of blend films. These are attributable to disturbance of the hydrogen bond pattern of silk fibroin and formation of new hydrogen bonds with PAAm. The values of strength and elongation at break of blend films slightly improved at 20–25% PAAm content. A sea–island structure was observed by examining the air surface of the blend films by scanning electron microscopy. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 71: 1563–1571, 1999

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here