Premium
Dependence of the mechanical properties of woodflour–polymer composites on the moisture content
Author(s) -
Marcovich Norma E.,
Reboredo María M.,
Aranguren Mirta I.
Publication year - 1998
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/(sici)1097-4628(19980627)68:13<2069::aid-app2>3.0.co;2-a
Subject(s) - composite material , materials science , composite number , flexural strength , maleic anhydride , moisture , sorption , polyester , flexural modulus , compression (physics) , compression molding , polymer , copolymer , chemistry , mold , organic chemistry , adsorption
Woodflour of Eucaliptus saligna with two different chemical treatments (mercerization and esterification with maleic anhydride) was used as filler of an unsaturated polyester matrix. Woodflour was treated to increase the interfacial adhesion with the matrix, to improve the dispersion of the particles, and to decrease the water sorption properties of the final composite. The objective of this study was to determine the influence of the moisture content and the woodflour chemical modification on the physical and mechanical properties of the different composites. Results indicated that mechanical properties (compression and bending tests) were severely affected by moisture and chemical modifications. In wet conditions, the composites made from treated woodflour had the lowest flexural modulus and ultimate stress. It was found that this was a reversible effect, because the original values of the compression properties were recovered after drying. Temperature scans in dynamic mechanical tests showed that an irreversible change occurred during exposure to humid environments, probably due to the hydrolysis of the polyester matrix. Essentially, the same behavior was observed for matrix and composites; however, a wood‐related transition overlapped the main transition in the case of wet composites. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 68: 2069–2076, 1998