Premium
Use of natural rubber prophylactics waste as a potential filler in styrene–butadiene rubber compounds
Author(s) -
Mathew George,
Singh R. P.,
Lakshminarayanan R.,
Thomas Sabu
Publication year - 1996
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/(sici)1097-4628(19960912)61:11<2035::aid-app19>3.0.co;2-7
Subject(s) - natural rubber , filler (materials) , styrene butadiene , materials science , composite material , curing (chemistry) , phase inversion , particle size , styrene , polymer , chemical engineering , chemistry , copolymer , biochemistry , membrane , engineering
Owing to the unstable nature of the latex compound and the strict specifications in the quality of latex products such as condoms and examination gloves, the rejection in the latex industry comes to about 10 to 15% of the rubber consumed. These latex rejects contain about 95% rubber hydrocarbon of very high quality. A cost‐effective technique has been developed for the reuse of natural rubber (NR) prophylacties waste in styrene–butadiene rubber (SBR). The influence of powdered latex rejects on the curing characteristics, mechanical properties, and failure behavior of SBR has been investigated. More emphasis is placed on the effect of both particle size and the loading of latex waste filler. Swelling studies were carried out to establish the degree of crosslinking of SBR and to assess the extent of interaction between the matrix and latex waste filler of varying particle sizes. A three layer model has been set up to study the diffusion of sulfur from the matrix phase to the filler phase. Scanning electron microscopy has been used to analyze the particle morphology, filler dispersion, and filler‐matrix interface adhesion. The results of the study revealed that NR prophylactics rejects can be used effectively as a potential filler in SBR up to about 40 phr loading. © 1996 John Wiley & Sons, Inc.