Premium
Properties and modification methods for vegetable fibers for natural fiber composites
Author(s) -
Bledzki A. K.,
Reihmane S.,
Gassan J.
Publication year - 1996
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/(sici)1097-4628(19960222)59:8<1329::aid-app17>3.0.co;2-0
Subject(s) - composite material , materials science , ultimate tensile strength , surface modification , polymer , modulus , fiber , natural fiber , composite number , absorption of water , chemical modification , wetting , adhesion , cellulose fiber , copolymer , chemical engineering , polymer chemistry , engineering
Studies on structure and properties of natural vegetable fibers (NVF) show that composites made of NVF combine good mechanical properties with a low specific mass. The high level of moisture absorption by the fiber, its poor wettability, as well as the insufficient adhesion between untreated fibers and the polymer matrix lead to debonding with age. To build composites with high mechanical properties, therefore, a surface modification of the fibers is necessary. The existing physical and chemical NVF modification methods—e.g., plasma treatment or graft copolymerization—which are used for the development of NVF–polymer composite properties is discussed. It is shown that modified cellulose fiber–polymer interaction mechanisms are complex and specific to every definite system. By using an coupling agent, like silanes or stearin acid, the Young's modulus and the tensile strength increases, dependent on the resin, until 50%. Simultaneously, the moisture absorption of the composites decreases for about 60%. With other surface modifications, similar results are obtained. © 1996 John Wiley & Sons, Inc.