Premium
DFT versus CI determination of the electron‐transfer matrix element in some case examples
Author(s) -
Sanz Javier Fdez.,
Calzado Carmen J.,
Márquez Antonio
Publication year - 2000
Publication title -
international journal of quantum chemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.484
H-Index - 105
eISSN - 1097-461X
pISSN - 0020-7608
DOI - 10.1002/(sici)1097-461x(2000)76:3<458::aid-qua14>3.0.co;2-g
Subject(s) - electron transfer , valence (chemistry) , cluster (spacecraft) , chemistry , transfer (computing) , density functional theory , matrix (chemical analysis) , density matrix , matrix element , electron , atomic physics , computational chemistry , statistical physics , physics , quantum mechanics , computer science , quantum , chromatography , particle physics , parallel computing , programming language
The electron‐transfer matrix element V ab , has been computed by using density functional theory and a configuration interaction procedure for some case examples. These examples are a π‐σ‐π spirocompound, a [Cu 2 Cl 6 ] 3− cluster modeling a Cu I –Cu II mixed valence system and a [Cu 2 O 7 ] 9− embedded cluster intended to model the hole‐doped La 2 CuO 4 perovskite. The B3‐LYP functional estimates of V ab are 398, 1751, and 3692 cm −1 , respectively. These values are found to be underestimated by roughly 15–19% with respect to those obtained from a difference‐dedicated configuration interaction (497, 2116, and 4355 cm −1 ). © 2000 John Wiley & Sons, Inc. Int J Quant Chem 76: 458–463, 2000