Premium
Accurate adapted Gaussian basis sets for the atoms from H through Xe
Author(s) -
Jorge F. E.,
Muniz E. P.
Publication year - 1999
Publication title -
international journal of quantum chemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.484
H-Index - 105
eISSN - 1097-461X
pISSN - 0020-7608
DOI - 10.1002/(sici)1097-461x(1999)71:4<307::aid-qua2>3.0.co;2-4
Subject(s) - basis (linear algebra) , gaussian , basis set , hartree–fock method , wave function , basis function , sto ng basis sets , generator (circuit theory) , limit (mathematics) , atom (system on chip) , atomic physics , physics , chemistry , quantum mechanics , mathematics , mathematical analysis , molecule , geometry , computer science , power (physics) , linear combination of atomic orbitals , embedded system
We have applied the generator coordinate Hartree–Fock method to generate adapted Gaussian basis sets for the atoms from H through Xe. The Griffin–Hill–Wheeler–Hartree–Fock equations are integrated numerically generating accurate basis sets for these atoms. Our atomic wave functions are an improvement over those of Clementi et al. using larger atom‐optimized geometrical Gaussian basis sets and Jorge et al. using a universal Gaussian basis set. In all cases, the current wave functions predict total energy results within 6.13×10 −4 hartree of the numerical Hartree–Fock limit. ©1999 John Wiley & Sons, Inc. Int J Quant Chem 71: 307–312, 1999