z-logo
Premium
Completeness of Gaussian orbital and geminal basis sets for linear molecules in L 2 and in the first and second Sobolev spaces
Author(s) -
Hill Robert Nyden
Publication year - 1998
Publication title -
international journal of quantum chemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.484
H-Index - 105
eISSN - 1097-461X
pISSN - 0020-7608
DOI - 10.1002/(sici)1097-461x(1998)68:6<357::aid-qua1>3.0.co;2-u
Subject(s) - geminal , completeness (order theory) , square integrable function , gaussian , basis (linear algebra) , sobolev space , mathematics , integrable system , space (punctuation) , symmetry (geometry) , pure mathematics , mathematical physics , mathematical analysis , physics , quantum mechanics , chemistry , geometry , stereochemistry , linguistics , philosophy
Completeness theorems for Gaussian orbital and geminal basis sets of axial symmetry are proved in the space L 2 of square integrable functions and in the first and second Sobolev spaces H 1 and H 2 . © 1998 John Wiley & Sons, Inc. Int J Quant Chem 68: 357–384, 1998

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here