Premium
Characters of two‐row representations of the symmetric group
Author(s) -
Wybourne Brian G.,
Flocke Norbert,
Karwowski Jacek
Publication year - 1997
Publication title -
international journal of quantum chemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.484
H-Index - 105
eISSN - 1097-461X
pISSN - 0020-7608
DOI - 10.1002/(sici)1097-461x(1997)62:3<261::aid-qua3>3.0.co;2-u
Subject(s) - eigenfunction , symmetric group , irreducible representation , transformation (genetics) , group (periodic table) , spin (aerodynamics) , mathematics , electron , pure mathematics , quantum number , physics , combinatorics , quantum mechanics , algebra over a field , theoretical physics , chemistry , eigenvalues and eigenvectors , biochemistry , thermodynamics , gene
Characters of irreducible representations (irreps) of the symmetric group corresponding to the two‐row Young diagrams, i.e., describing transformation properties of N ‐electron eigenfunctions of the total spin operators, have been expressed as explicit functions of the number of electrons N and of the total spin quantum number S . The formulas are useful in various areas of theory of many‐electron systems, particularly in designing algorithms for evaluation of spectral density moments. © 1997 John Wiley & Sons, Inc.