Premium
Translational and rotational invariance requisites for density functional derivatives
Author(s) -
Joubert Daniel P.
Publication year - 1997
Publication title -
international journal of quantum chemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.484
H-Index - 105
eISSN - 1097-461X
pISSN - 0020-7608
DOI - 10.1002/(sici)1097-461x(1997)61:2<355::aid-qua19>3.0.co;2-a
Subject(s) - prime (order theory) , rotational invariance , physics , mathematical physics , density functional theory , combinatorics , mathematics , quantum mechanics
Translational and rotational invariance of functionals lead to hierarchies of equations between successive derivatives. These hierarchies allow alternating series expansions of some density functionals in terms of functional derivatives and charge density. Translational and rotational invariance also give rise to integrodifferential equations that link derivatives of all orders. From the minimal properties of the kinetic energy functional T s [ρ] and the functional F[ρ] = min Ψ→ρ <Ψ|T + V ee |Ψ>, it follows that $int dˆ3 r dˆ3 rˆprimef({bold r}) {delˆ2 T―s[rho]}over{delrho({bold r})delrho({bold rˆprime})}f({bold rˆprime}) geq 0hspace{1cm}hbox{and}hspace{1cm}int dˆ3 r dˆ3 rˆprimef({bold r}) {delˆ2 F[rho]}over{delrho({bold r})delrho({bold rˆprime})}f({bold rˆprime}) geq 0$ for all ∫ d 3 r d 3 f′ f(r) = 0. This property combined with constraints on functionals due to translational invariance lead to inequalities satisfied by first derivatives of selected density functionals. © 1997 John Wiley & Sons, Inc.