Premium
Kainate‐induced apoptosis correlates with c‐Jun activation in cultured cerebellar granule cells
Author(s) -
Cheung N.S.,
Carroll F.Y.,
Larm J.A.,
Beart P.M.,
Giardina S.F.
Publication year - 1998
Publication title -
journal of neuroscience research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.72
H-Index - 160
eISSN - 1097-4547
pISSN - 0360-4012
DOI - 10.1002/(sici)1097-4547(19980401)52:1<69::aid-jnr7>3.0.co;2-i
Subject(s) - cnqx , kainate receptor , microbiology and biotechnology , apoptosis , biology , cerebellum , tunel assay , programmed cell death , granule cell , glial fibrillary acidic protein , dna fragmentation , apoptotic dna fragmentation , kainic acid , receptor , glutamate receptor , endocrinology , immunology , hippocampal formation , biochemistry , ampa receptor , dentate gyrus , immunohistochemistry
Abstract We have investigated the involvement of c‐Jun in cell death induced by exposure of primary cultures of murine cerebellar granule cells to the glutamate receptor agonist kainate (KA) and evaluated its possible use as a marker for apoptosis. Using cerebellar granule cell neurones from postnatal day 7 mice, we found that 1 hr exposure to KA (1–1000 μM) induced a concentration‐dependent neuronal cell death with characteristic apoptotic morphology, including cell shrinkage, neurite blebbing and DNA fragmentation. In addition KA‐induced a concentration‐dependent expression of c‐Jun mRNA and protein as determined by in situ hybridization and immunocytochemistry respectively. DNA fragmentation was detected using terminal transferase‐mediated nick‐end (TUNEL) labelling and agarose gel electrophoresis. KA‐induced cell death was significantly attenuated by the non‐NMDA receptor antagonist 6‐cyano‐7‐nitroquinoxaline‐2,3‐dione (CNQX; 50 μM), which shifted the concentration‐response curve significantly rightward. The number of apoptotic cell bodies, determined by TUNEL, was also reduced by CNQX (50 μM), with only 15–20% of neurones staining positive after exposure to 1mM KA. In addition, the number of positively stained cells for c‐Jun protein and mRNA was substantially reduced by CNQX (50 μM) as determined by random and representative cell counts. These results show for the first time that KA induced apoptotic neuronal death in cultured murine cerebellar granule cells involves the induction of c‐Jun mRNA and protein, suggesting the involvement of this immediate early gene in excitotoxic receptor‐mediated apoptosis and its potential use as a marker for apoptotic cell death. J. Neurosci. Res. 52:69–82, 1998. © 1998 Wiley‐Liss, Inc.