Premium
Numerical studies on non‐linear free surface flow using generalized Schwarz–Christoffel transformation
Author(s) -
Chuang J. M.
Publication year - 2000
Publication title -
international journal for numerical methods in fluids
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.938
H-Index - 112
eISSN - 1097-0363
pISSN - 0271-2091
DOI - 10.1002/(sici)1097-0363(20000415)32:7<745::aid-fld981>3.0.co;2-6
Subject(s) - mathematics , mathematical analysis , discretization , christoffel symbols , boundary (topology) , boundary value problem , flow (mathematics) , domain decomposition methods , schwarz alternating method , potential flow , geometry , finite element method , physics , thermodynamics , mechanics
This paper deals with a technique to transform a free surface flow problem in the physical domain with an unknown boundary to a standard domain that has a fixed boundary. All the difficulties in the physical domain are reduced to finding an unknown mapping function that can be solved iteratively in a standard domain. A derivation is first presented to express an analytic function in terms of the boundary value of its imaginary part. Using a relationship between boundaries of the standard and the physical domains, a formula for the generalized Schwarz–Christoffel transformation is then developed. Based on the generalized Schwarz–Christoffel integral and the Hilbert transform, a pair of non‐linear boundary integro‐differential equations in an infinite strip is formulated for solving fully non‐linear free surface flow problems. The boundary integral equations are then discretized with quadratic elements in an untruncated standard domain and solved by the Levenberg–Marquardt algorithm. Several examples of supercritical flow past obstructions are provided to demonstrate the flexibility and the accuracy of the proposed numerical scheme. Copyright © 2000 John Wiley & Sons, Ltd.