z-logo
Premium
On numerical errors and turbulence modeling in tip vortex flow prediction
Author(s) -
DaclesMariani Jennifer,
Kwak Dochan,
Zilliac Gregory
Publication year - 1999
Publication title -
international journal for numerical methods in fluids
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.938
H-Index - 112
eISSN - 1097-0363
pISSN - 0271-2091
DOI - 10.1002/(sici)1097-0363(19990515)30:1<65::aid-fld839>3.0.co;2-y
Subject(s) - turbulence , vortex , computational fluid dynamics , mechanics , k epsilon turbulence model , flow (mathematics) , statistical physics , physics , turbulence modeling , classical mechanics , mathematics
The accuracy of tip vortex flow prediction in the near‐field region is investigated numerically by attempting to quantify the shortcomings of the turbulence models and the flow solver. In particular, some turbulence models can produce a ‘numerical diffusion’ that artificially smears the vortex core. Low‐order finite differencing techniques of the convective and pressure terms of the Navier–Stokes equations and inadequate grid density and distribution can also produce the same adverse effect. The flow over a wing and the near‐wake with the wind tunnel walls included was simulated using 2.5 million grid points. Two subset problems, one using a steady, three‐dimensional analytical vortex, and the other, a vortex obtained from experiment and propagated downstream, were also devised in order to make the study of vortex preservation more tractable. The method of artificial compressibility is used to solve the steady, three‐dimensional, incompressible Navier–Stokes equations. Two one‐equation turbulence models (Baldwin–Barth and Spalart–Allmaras turbulence models), have been used with the production term modified to account for the stabilizing effect of the nearly solid body rotation in the vortex core. Finally, a comparison between the computed results and experiment is presented. Published in 1999 by John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here