Premium
Multidomain implicit numerical scheme
Author(s) -
Povitsky A.,
Wolfshtein M.
Publication year - 1997
Publication title -
international journal for numerical methods in fluids
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.938
H-Index - 112
eISSN - 1097-0363
pISSN - 0271-2091
DOI - 10.1002/(sici)1097-0363(19970915)25:5<547::aid-fld576>3.0.co;2-v
Subject(s) - computation , computational fluid dynamics , mathematics , multiprocessing , numerical stability , turbulence , computer science , numerical analysis , parallel computing , mechanics , algorithm , mathematical analysis , physics
A multidomain method for the solution of elliptic CFD problems with an ADI scheme is described. Two methods of treatment of internal boundary conditions for ADI functions are discussed, namely an explicit and a semi‒implicit method. Stability conditions for the proposed methods are derived theoretically. The semi‒implicit scheme is more stable than the explicit scheme, leading to improved numerical efficiency for multidomain computations. Numerical computations for a linear convection‐diffusion equation, for buoyancy‒driven recirculating flow in a square cavity and for turbulent flow in a square duct confirmed the theoretical results. Computer runs of the multidomain code in a distributed memory multiprocessor system were successful and efficient and produced reliable results. © 1997 John Wiley & Sons, Ltd.