Premium
Mobilization of broad host range plasmid from Pseudomonas putida to established biofilm of Bacillus azotoformans. I. Experiments
Author(s) -
Beaudoin D. L.,
Bryers J. D.,
Cunningham A. B.,
Peretti S. W.
Publication year - 1998
Publication title -
biotechnology and bioengineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.136
H-Index - 189
eISSN - 1097-0290
pISSN - 0006-3592
DOI - 10.1002/(sici)1097-0290(19980205)57:3<272::aid-bit3>3.0.co;2-e
Subject(s) - plasmid , pseudomonas putida , strain (injury) , biofilm , nutrient , biology , microbiology and biotechnology , bacteria , chemistry , pseudomonadaceae , pseudomonas , biochemistry , dna , ecology , genetics , anatomy
A strain of Pseudomonas putida harboring plasmids RK2 and pDLB101 was exposed to a pure culture biofilm of Bacillus azotoformans grown in a rotating annular reactor under three different concentrations of the limiting nutrient, succinate. Experimental results demonstrated that the broad host range RSF1010 derivative pDLB101 was transferred to and expressed by B. azotoformans. At the lower concentrations, donor mediated plasmid transfer increased with increasing nutrient levels, but the highest nutrient concentration yielded the lowest rate of donor to recipient plasmid transfer. For transconjugant initiated transfer, the rate of transfer increased with increasing nutrient concentrations for all cases. At the lower nutrient concentrations, the frequency of plasmid transfer was higher between donors and recipients than between transconjugants and recipients. The reverse was true at the highest succinate concentration. The rates and frequencies of plasmid transfer by mobilization were compared to gene exchange by retrotransfer. The initial rate of retrotransfer was slower than mobilization, but then increased dramatically. Retrotransfer produced a plasmid transfer frequency more than an order of magnitude higher than simple mobilization. © 1998 John Wiley & Sons, Inc. Biotechnol Bioeng 57: 272–279, 1998.