Premium
Bootstrap approach for constructing confidence intervals for population pharmacokinetic parameters. I: a use of bootstrap standard error
Author(s) -
Yafune Akifumi,
Ishiguro Makio
Publication year - 1999
Publication title -
statistics in medicine
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.996
H-Index - 183
eISSN - 1097-0258
pISSN - 0277-6715
DOI - 10.1002/(sici)1097-0258(19990315)18:5<581::aid-sim47>3.0.co;2-1
Subject(s) - confidence interval , statistics , population , asymptotic distribution , mathematics , normality , sample size determination , asymptotic analysis , econometrics , confidence distribution , medicine , estimator , environmental health
In population pharmacokinetic studies, one of the main objectives is to estimate population pharmacokinetic parameters specifying the population distributions of pharmacokinetic parameters. Confidence intervals for population pharmacokinetic parameters are generally estimated by assuming the asymptotic normality, which is a large‐sample property, that is, a property which holds for the cases where sample sizes are large enough. In actual clinical trials, however, sample sizes are limited and not so large in general. Likelihood functions in population pharmacokinetic modelling include a multiple integral and are quite complicated. We hence suspect that the sample sizes of actual trials are often not large enough for assuming the asymptotic normality and that the asymptotic confidence intervals underestimate the uncertainties of the estimates of population pharmacokinetic parameters. As an alternative to the asymptotic normality approach, we can employ a bootstrap approach. This paper proposes a bootstrap standard error approach for constructing confidence intervals for population pharmacokinetic parameters. Comparisons between the asymptotic and bootstrap confidence intervals are made through applications to a simulated data set and an actual phase I trial. Copyright © 1999 John Wiley & Sons, Ltd.