z-logo
Premium
Sample size calculations for paired or matched ordinal data
Author(s) -
Julious S. A.,
Campbell M. J.
Publication year - 1998
Publication title -
statistics in medicine
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.996
H-Index - 183
eISSN - 1097-0258
pISSN - 0277-6715
DOI - 10.1002/(sici)1097-0258(19980730)17:14<1635::aid-sim881>3.0.co;2-k
Subject(s) - sample size determination , statistics , categorical variable , mathematics , sample (material) , ordinal data , rule of thumb , algorithm , chemistry , chromatography
The problem of calculating the number of subjects in a paired or matched study in which the outcome variable is ordinal is discussed. A common approach in the case of a two category variable is to calculate the required number of discordant pairs, and then divide this by the expected proportion of discordant pairs to obtain the total sample size. An approximate solution for the number of discordant pairs is proposed for ordinal data and compared to sample sizes estimated through simulation. It is shown that the sample sizes are underestimated when the number of categories is two, but that the approximation improves as the number of categories increases. Comparison of the required discordant sample size when there are two categories with the required sample size for more than two categories would suggest that the loss of power is not great if a categorical variable is collapsed into only two categories. However, the total sample size required is likely to be greater with only two categories, since the expected proportion of discordant to concordant pairs increases. Since the expected number of discordant pairs is likely to decrease as the number of categories increases, this suggests that as a rule of thumb the required discordant sample size for the two category case be used as an approximation to the total required sample size when the number of categories is greater than two. © 1998 John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here