z-logo
Premium
A continuum Lagrangian sensitivity analysis for metal forming processes with applications to die design problems
Author(s) -
Zabaras Nicholas,
Bao Yangang,
Srikanth Akkaram,
Frazier William Garth
Publication year - 2000
Publication title -
international journal for numerical methods in engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.421
H-Index - 168
eISSN - 1097-0207
pISSN - 0029-5981
DOI - 10.1002/(sici)1097-0207(20000620)48:5<679::aid-nme895>3.0.co;2-u
Subject(s) - sensitivity (control systems) , die (integrated circuit) , boundary value problem , forging , mathematics , mathematical analysis , engineering , mechanical engineering , electronic engineering
A continuum sensitivity analysis is presented for large inelastic deformations and metal forming processes. The formulation is based on the differentiation of the governing field equations of the direct problem and development of weak forms for the corresponding field sensitivity equations. Special attention is given to modelling of the sensitivity boundary conditions that result due to frictional contact between the die and the workpiece. The contact problem in the direct deformation analysis is modelled using an augmented Lagrangian formulation. To avoid issues of non‐differentiability of the contact conditions, appropriate regularizing assumptions are introduced for the calculation of the sensitivity of the contact tractions. The proposed analysis is used for the calculation of sensitivity fields with respect to various process parameters including the die surface. The accuracy and effectiveness of the proposed method are demonstrated with a number of representative example problems. In the die design applications, a Bézier representation of the die curve is introduced. The control points of the Bézier curve are used as the design parameters. Comparison of the computed sensitivity results with those obtained using the direct analysis for two nearby dies and a finite difference approximation indicate a very high accuracy of the proposed analysis. The method is applied to the design of extrusion dies that minimize the standard deviation of the material state in the final product or minimize the required extrusion force for a given reduction ratio. An open‐forging die is also designed which for a specified stroke and initial workpiece produces a final product of desired shape. Copyright © 2000 John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here