Premium
Flux and traction boundary elements without hypersingular or strongly singular integrals
Author(s) -
Dominguez J.,
Ariza M. P.,
Gallego R.
Publication year - 2000
Publication title -
international journal for numerical methods in engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.421
H-Index - 168
eISSN - 1097-0207
pISSN - 0029-5981
DOI - 10.1002/(sici)1097-0207(20000510)48:1<111::aid-nme870>3.0.co;2-y
Subject(s) - boundary element method , mathematics , discretization , mathematical analysis , traction (geology) , singular boundary method , boundary (topology) , laplace transform , singularity , regularization (linguistics) , finite element method , physics , computer science , geomorphology , artificial intelligence , thermodynamics , geology
The present paper deals with a boundary element formulation based on the traction elasticity boundary integral equation (potential derivative for Laplace's problem). The hypersingular and strongly singular integrals appearing in the formulation are analytically transformed to yield line and surface integrals which are at most weakly singular. Regularization and analytical transformation of the boundary integrals is done prior to any boundary discretization. The integration process does not require any change of co‐ordinates and the resulting integrals can be numerically evaluated in a simple and efficient way. The formulation presented is completely general and valid for arbitrary shaped open or closed boundaries. Analytical expressions for all the required hypersingular or strongly singular integrals are given in the paper. To fulfil the continuity requirement over the primary density a simple BE discretization strategy is adopted. Continuous elements are used whereas the collocation points are shifted towards the interior of the elements. This paper pretends to contribute to the transformation of hypersingular boundary element formulations as something clear, general and easy to handle similar to in the classical formulation. Copyright © 2000 John Wiley & Sons, Ltd.