z-logo
Premium
Trefftz boundary elements—multi‐region formulations
Author(s) -
Portela A.,
Charafi A.
Publication year - 1999
Publication title -
international journal for numerical methods in engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.421
H-Index - 168
eISSN - 1097-0207
pISSN - 0029-5981
DOI - 10.1002/(sici)1097-0207(19990710)45:7<821::aid-nme606>3.0.co;2-s
Subject(s) - mathematics , boundary (topology) , galerkin method , discretization , collocation (remote sensing) , boundary element method , boundary value problem , algebraic equation , mathematical analysis , domain (mathematical analysis) , finite element method , singular boundary method , coupling (piping) , computer science , nonlinear system , physics , mechanical engineering , quantum mechanics , machine learning , engineering , thermodynamics
This paper is concerned with an effective numerical implementation of the Trefftz boundary element method, for the analysis of two‐dimensional potential problems, defined in arbitrarily shaped domains. The domain is first discretized into multiple subdomains or regions. Each region is treated as a single domain, either finite or infinite, for which a complete set of solutions of the problem is known in the form of an expansion with unknown coefficients. Through the use of weighted residuals, this solution expansion is then forced to satisfy the boundary conditions of the actual domain of the problem, leading thus to a system of equations, from which the unknowns can be readily determined. When this basic procedure is adopted, in the analysis of multiple‐region problems, proper boundary integral equations must be used, along common region interfaces, in order to couple to each other the unknowns of the solution expansions relative to the neighbouring regions. These boundary integrals are obtained from weighted residuals of the coupling conditions which allow the implementation of any order of continuity of the potential field, across the interface boundary, between neighbouring regions. The technique used in the formulation of the region‐coupling conditions drives the performance of the Trefftz boundary element method. While both of the collocation and Galerkin techniques do not generate new unknowns in the problem, the technique of Galerkin presents an additional and unique feature: the size of the matrix of the final algebraic system of equations which is always square and symmetric, does not depend on the number of boundary elements used in the discretization of both the actual and region‐interface boundaries. This feature which is not shared by other numerical methods, allows the Galerkin technique of the Trefftz boundary element method to be effectively applied to problems with multiple regions, as a simple, economic and accurate solution technique. A very difficult example is analysed with this procedure. The accuracy and efficiency of the implementations described herein make the Trefftz boundary element method ideal for the study of potential problems in general arbitrarily‐shaped two‐dimensional domains. Copyright © 1999 John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here