
Comparison of cholinergic and histaminergic axons in the lateral geniculate complex of the macaque monkey
Author(s) -
Wilson James R.,
Manning Karen A.,
Forestner Donna M.,
Counts Scott E.,
Uhlrich Daniel J.
Publication year - 1999
Publication title -
the anatomical record
Language(s) - English
Resource type - Journals
eISSN - 1097-0185
pISSN - 0003-276X
DOI - 10.1002/(sici)1097-0185(19990701)255:3<295::aid-ar5>3.0.co;2-q
Subject(s) - histaminergic , cholinergic , parvocellular cell , neuroscience , macaque , lateral geniculate nucleus , biology , anterograde tracing , geniculate , cholinergic neuron , anatomy , nucleus , visual cortex , histamine , endocrinology
The cholinergic and histaminergic projections have important neuromodulatory functions in the ascending visual pathways, so we compared the pattern and mode of innervation of the two projections in the lateral geniculate complex (dorsal lateral geniculate nucleus and pregeniculate nucleus) of the macaque monkey. Brain tissue from macaques was immunoreacted by means of antibodies to choline acetyltransferase (ChAT) or to histamine and processed for light and electron microscopy. A dense plexus of thin, highly branched ChAT‐immunoreactive axons laden with varicosities was found in all layers of the dLGN including the koniocellular laminae and in the pregeniculate nucleus. ChAT label was more dense in magnocellular layers 1 and 2 than in parvocellular layers 3–6 and relatively sparse in the interlaminar zones. Varicosities associated with the cholinergic axons had an average of three conventional asymmetric synapses per varicosity, and these appeared to contact dendrites of both thalamocortical cells and interneurons. Histamine‐immunoreactive axons were distributed homogeneously throughout all laminar and interlaminar zones of the dLGN, but were denser in the pregeniculate nucleus than in the dLGN. Histaminergic axons branched infrequently and were typically larger in caliber than cholinergic axons. The overwhelming majority of varicosities were found en passant and rarely displayed conventional synapses, despite the abundance of synaptic vesicles, and were not associated preferentially with specific cellular structures. The innervation of the macaque dLGN complex by cholinergic and histaminergic systems is consistent with their proposed role in state dependent modulation of thalamic activity. The dense and highly synaptic innervation by cholinergic axons supports the proposal of additional involvement of these axons in functions related to eye movements. Anat Rec 255:295–305, 1999. © 1999 Wiley‐Liss, Inc.