z-logo
Premium
Mean field analysis of FKBP12 complexes with FK506 and rapamycin: Implications for a role of crystallographic water molecules in molecular recognition and specificity
Author(s) -
Rejto Paul A.,
Verkhivker Gennady M.
Publication year - 1997
Publication title -
proteins: structure, function, and bioinformatics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.699
H-Index - 191
eISSN - 1097-0134
pISSN - 0887-3585
DOI - 10.1002/(sici)1097-0134(199707)28:3<313::aid-prot2>3.0.co;2-d
Subject(s) - fkbp , chemistry , ternary complex , molecule , hydrogen bond , crystallography , protein structure , chemical physics , biochemistry , organic chemistry , enzyme
Mean field analysis of FKBP12 complexes with FK506 and rapamycin has been performed by using structures obtained from molecular docking simulations on a simple, yet robust molecular recognition energy landscape. When crystallographic water molecules are included in the simulations as an extension of the FKBP12 protein surface, there is an appreciable stability gap between the energy of the native FKBP12–FK506 complex and energies of conformations with the “native‐like” binding mode. By contrast, the energy spectrum of the FKBP12–rapamycin complex is dense regardless of the presence of the water molecules. The stability gap in the FKBP12–FK506 system is determined by two critical water molecules from the effector region that participate in a network of specific hydrogen bond interactions. This interaction pattern protects the integrity and precision of the composite ligand‐protein effector surface in the binary FKBP12–FK506 complex and is preserved in the crystal structure of the FKBP12–FK506–calcineurin ternary complex. These features of the binding energy landscapes provide useful insights into specific and nonspecific aspects of FK506 and rapamycin recognition. Proteins 28:313–324, 1997. © 1997 Wiley‐Liss, Inc.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here