Premium
A survey on snarks and new results: Products, reducibility and a computer search
Author(s) -
Cavicchioli A.,
Meschiari M.,
Ruini B.,
Spaggiari F.
Publication year - 1998
Publication title -
journal of graph theory
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.164
H-Index - 54
eISSN - 1097-0118
pISSN - 0364-9024
DOI - 10.1002/(sici)1097-0118(199806)28:2<57::aid-jgt1>3.0.co;2-d
Subject(s) - combinatorics , mathematics , discrete mathematics , vertex (graph theory) , graph
In this paper we survey recent results and problems of both theoretical and algorithmic character on the construction of snarks—non‐trivial cubic graphs of class two, of cyclic edge‐connectivity at least 4 and with girth ≥ 5. We next study the process, also considered by Cameron, Chetwynd, Watkins, Isaacs, Nedela, and Sˇkoviera, of splitting a snark into smaller snarks which compose it. This motivates an attempt to classify snarks by recognizing irreducible and prime snarks and proving that all snarks can be constructed from them. As a consequence of these splitting operations, it follows that any snark (other than the Petersen graph) of order ≤ 26 can be built as either a dot product or a square product of two smaller snarks. Using a new computer algorithm we have confirmed the computations of Brinkmann and Steffen on the classification of all snarks of order less than 30. Our results recover the well‐known classification of snarks of order not exceeding 22. Finally, we prove that any snark G of order ≤ 26 is almost Hamiltonian, in the sense that G has at least one vertex v for which G \ v is Hamiltonian. © 1998 John Wiley & Sons, Inc. J Graph Theory 28: 57–86, 1998