Premium
A short proof of a theorem on Hamiltonian graphs
Author(s) -
Ainouche A.
Publication year - 1996
Publication title -
journal of graph theory
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.164
H-Index - 54
eISSN - 1097-0118
pISSN - 0364-9024
DOI - 10.1002/(sici)1097-0118(199605)22:1<83::aid-jgt11>3.0.co;2-p
Subject(s) - mathematics , combinatorics , graph , hamiltonian (control theory) , hamiltonian path , discrete mathematics , mathematical optimization
In this note, we give a short proof of a stronger version of the following theorem: Let G be a 2‐connected graph of order n such that \documentclass{article}\pagestyle{empty}\begin{document}$ d(u)+d(v)+d(w) \geq n + \mid N(u) \cap N(v) \cap N(w) \mid $\end{document} for any independent set { u , v , w }, then G is hamiltonian. © 1996 John Wiley & Sons Inc.