z-logo
Premium
Computationally efficient canonical molecular dynamics simulations by using a multiple time‐step integrator algorithm combined with the particle mesh Ewald method and with the fast multipole method
Author(s) -
Kawata Masaaki,
Mikami Masuhiro
Publication year - 2000
Publication title -
journal of computational chemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.907
H-Index - 188
eISSN - 1096-987X
pISSN - 0192-8651
DOI - 10.1002/(sici)1096-987x(200002)21:3<201::aid-jcc4>3.0.co;2-#
Subject(s) - integrator , molecular dynamics , multipole expansion , algorithm , fast multipole method , computer science , dynamics (music) , statistical physics , particle (ecology) , physics , computational chemistry , chemistry , computer network , oceanography , bandwidth (computing) , quantum mechanics , acoustics , geology
An efficient implementation of the canonical molecular dynamics simulation using the reversible reference system propagator algorithm (r‐RESPA) combined with the particle mesh Ewald method (PMEM) and with the macroscopic expansion of the fast multipole method (MEFMM) was examined. The performance of the calculations was evaluated for systems with 3000, 9999, 30,000, 60,000, and 99,840 particles. For a given accuracy, the optimal conditions for minimizing the CPU time for the implementation of the Ewald method, the PMEM, and the MEFMM were first analyzed. Using the optimal conditions, we evaluated the performance and the reliability of the integrated methods. For all the systems examined, the r‐RESPA with the PMEM was about twice as fast as the r‐RESPA with the MEFMM. The difference arose from the difference in the numerical complexities of the fast Fourier transform in the PMEM and from the transformation of the multipole moments into the coefficients of the local field expansion in the MEFMM. Compared with conventional methods, such as the velocity‐verlet algorithm with the Ewald method, significant speedups were obtained by the integrated methods; the speedup of the calculation was a function of system size, and was a factor of 100 for a system with 3000 particles and increased to a factor of 700 for a system with 99,840 particles. These integrated calculations are, therefore, promising for realizing large‐scale molecular dynamics simulations for complex systems. © 2000 John Wiley & Sons, Inc. J Comput Chem 21: 201–217, 2000

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here