z-logo
Premium
Semiempirical treatment of electrostatic potentials and partial charges in combined quantum mechanical and molecular mechanical approaches
Author(s) -
Bakowies Dirk,
Thiel Walter
Publication year - 1996
Publication title -
journal of computational chemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.907
H-Index - 188
eISSN - 1096-987X
pISSN - 0192-8651
DOI - 10.1002/(sici)1096-987x(19960115)17:1<87::aid-jcc8>3.0.co;2-x
Subject(s) - mndo , ab initio , partial charge , quantum , chemistry , electrostatics , ab initio quantum chemistry methods , wave function , computational chemistry , charge (physics) , molecular physics , quantum mechanics , physics , molecule
A semiempirical treatment of electrostatic potentials and partial charges is presented. These are the basic components needed for the evaluation of electrostatic interaction energies in combined quantum mechanical and molecular mechanical approaches. The procedure to compute electrostatic potentials uses AM1 and MNDO wave functions and is based on one previously suggested by Ford and Wang. It retains the NDDO approximation and is thus both easy to implement and computationally efficient. Partial atomic charges are derived from a semiempirical charge equilibration model, which is based on the principle of electronegativity equalization. Large sets of ab initio restricted Hartee‐Fock (RHF/6‐31G*) reference data have been used to calibrate the semiempirical models. Applying the final parameters (C, H, N, O), the ab initio electrostatic potentials are reproduced with an average accuracy of 20% (AM1) and 25% (MNDO), respectively, and the ab initio potential derived charges normally to within 0.1 e. In most cases our parameterized models are more accurate than the much more expensive quasi ab initio techniques, which employ deorthogonalized semiempirical wave functions and have generally been preferred in previous applications. © 1996 John Wiley & Sons, Inc.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here