Premium
Postembryonic development of the dorsal longitudinal flight muscle and its innervation in Manduca sexta
Author(s) -
Duch Carsten,
Bayline Ronald J.,
Levine Richard B.
Publication year - 2000
Publication title -
journal of comparative neurology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.855
H-Index - 209
eISSN - 1096-9861
pISSN - 0021-9967
DOI - 10.1002/(sici)1096-9861(20000619)422:1<1::aid-cne1>3.0.co;2-s
Subject(s) - manduca sexta , biology , metamorphosis , anatomy , pupa , myocyte , larva , manduca , neuroscience , sphingidae , ganglion , microbiology and biotechnology , ecology
The neuromuscular systems of holometabolous insects must be remodeled during metamorphosis to allow striking behavioral changes, such as the acquisition of flight. The fast contracting dorsal longitudinal flight muscle (DLM) of Manduca arises from an anlage containing both remnants of specific larval dorsal body wall muscles and extrinsic myoblasts. In the mesothorax, the DLM is innervated by five persisting larval motoneurons: one in the mesothoracic and four in the prothoracic ganglion. These motoneurons innervate two slowly contracting body wall muscles in the larva. 2 days before pupation, the DLM template fibers begin to degenerate, whereas other muscles remain intact until pupation. Correspondingly, the motor terminals retract from the template fibers while they remain on other muscle fibers until pupation. Accumulation and proliferation of putative myoblasts also starts 2 days before pupation in close spatial relationship to the retracted motor tufts around the degenerating larval template fibers. Proliferation increases through the early pupal stages, and is detected within the anlage until the ninth day after pupation. 2 days after pupation, the anlage splits into five bundles, each innervated by one motoneuron. Striations occur on the seventh day after pupation when the growing motor axons reach the attachment sites. Subsequently, the muscle grows in volume and higher‐order motor branches are formed. Within the central nervous system, there is dramatic regression of larval dendrites followed by growth of new dendrites as the persistent motoneurons assume their new role in flight behavior. Both central and peripheral remodeling follow similar time courses. J. Comp. Neurol. 422:1–17, 2000. © 2000 Wiley‐Liss, Inc.