Premium
Organization of sensory cortex in the East African hedgehog ( Atelerix albiventris )
Author(s) -
Catania Kenneth C.,
Collins Christine E.,
Kaas Jon H.
Publication year - 2000
Publication title -
journal of comparative neurology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.855
H-Index - 209
eISSN - 1096-9861
pISSN - 0021-9967
DOI - 10.1002/(sici)1096-9861(20000529)421:2<256::aid-cne10>3.0.co;2-y
Subject(s) - somatosensory system , biology , sensory system , neocortex , neuroscience , anatomy , cortex (anatomy) , posterior parietal cortex , visual cortex
We investigated the organization of neocortex in the East African hedgehog ( Atelerix albiventris ) with microelectrode recordings from sensory areas that were later correlated with cytochrome oxidase patterns in sections of flattened cortex. The location of corticospinal projecting neurons was also examined and related to sensory areas by making small injections of wheat germ agglutinin‐horseradish peroxidase into the spinal cord. Our goals were to determine how hedgehog cortex is organized, how much sensory areas overlap, and to compare results with recent findings in other insectivores. Evidence was found for three separate topographically organized somatosensory areas, two visual areas, and a caudolateral auditory area. A medial somatosensory area corresponded to S1, the primary somatosensory area, whereas two lateral areas partially encircled auditory cortex and corresponded to the parietal ventral area (PV) and the secondary somatosensory area (S2). Primary visual cortex (V1) was delineated by a caudomedial cytochrome oxidase dark oval, and a more lateral visual area between V1 and somatosensory cortex corresponded to V2, or area 18. Two patches of corticospinal projecting cells were found primarily overlapping S1 and S2. Some bimodal auditory and somatosensory responses were found in parts of PV and S2, but for the most part, areas had relatively sharp histochemically apparent and physiologically defined borders. The present results indicate that the caudal neocortex of hedgehogs has only a few sensory areas, corresponding to those commonly found in several other small‐brained mammals. Hedgehog cortical organization differs significantly in somatotopy, number, and position of fields from that of closely related shrews and moles. Thus, clear specializations occur, even within the order Insectivora. J. Comp. Neurol. 421:256–274, 2000. © 2000 Wiley‐Liss, Inc.