z-logo
Premium
Location of reticular premotor areas of a motor center innervating craniocervical muscles in the mallard ( Anas platyrhynchos L.)
Author(s) -
Tellegen A.J.,
Dubbeldam J.L.
Publication year - 1999
Publication title -
journal of comparative neurology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.855
H-Index - 209
eISSN - 1096-9861
pISSN - 0021-9967
DOI - 10.1002/(sici)1096-9861(19990315)405:3<281::aid-cne1>3.0.co;2-y
Subject(s) - reticular formation , medulla oblongata , anatomy , neuroscience , reticular connective tissue , biology , brainstem , anterograde tracing , cuneate nucleus , efferent , spinal cord , nucleus , central nervous system , afferent
The supraspinal nucleus (SSp) in the mallard, which lies in the rostral spinal cord and caudal brainstem, is a motor nucleus that forms the rostral continuation of the ventral horn. It contains part of the motoneurons innervating the craniocervical muscles. Injections with horseradish peroxidase (HRP) and wheat germ agglutinin conjugated to HRP (WGA) in the SSp were used to localize the craniocervical premotor neurons in the medullary reticular formation. A mixture of WGA and HRP (WGA/HRP) or biotinylated dextran amine (BDA) were injected in the different reticular areas to test the results. Small numbers of craniocervical premotor neurons were found bilaterally in the ventromedial part of the parvocellular reticular formation (RPcvm) and in the caudal extension of RPcvm, the nucleus centralis dorsalis of the medulla oblongata, and the gigantocellular reticular formation (RGc). In a second series of experiments, WGA/HRP and BDA injections in these reticular areas were used to visualize afferent fibers and terminals in the SSp. The combination of the two types of experiments shows that RPcvm and RGc contain modest numbers of craniocervical premotor neurons. Because the reticular formation also contains jaw and tongue premotor neurons and receives a variety of sensory projections, the present results suggest that the medullary reticular formation plays a role in the coordination of complex movements (e.g., feeding). The pattern of afferent and efferent connections of the reticular formation is used to redefine its subdivisions in the myelencephalon of the mallard. J. Comp. Neurol. 405:281–298, 1999. © 1999 Wiley‐Liss, Inc.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here