Premium
Activation of neuropeptide FF neurons in the brainstem nucleus tractus solitarius following cardiovascular challenge and opiate withdrawal
Author(s) -
Jhamandas J.H.,
Harris K.H.,
Petrov T.,
Yang H.Y.T.,
Jhamandas K.H.
Publication year - 1998
Publication title -
journal of comparative neurology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.855
H-Index - 209
eISSN - 1096-9861
pISSN - 0021-9967
DOI - 10.1002/(sici)1096-9861(19981214)402:2<210::aid-cne6>3.0.co;2-c
Subject(s) - brainstem , medicine , (+) naloxone , solitary tract , endocrinology , parabrachial nucleus , solitary nucleus , area postrema , angiotensin ii , baroreceptor , morphine , c fos , chemistry , stimulation , opioid , central nervous system , receptor , gene expression , heart rate , blood pressure , biochemistry , gene
Neuropeptide FF (NPFF), a morphine modulatory peptide, is localized within discrete autonomic regions including the brainstem nucleus tractus solitarius (NTS) and the parabrachial nucleus (PBN). We investigated the activation of NPFF neurons in the NTS of rats induced by cardiovascular challenge and centrally generated opiate withdrawal. For hypotensive stimulation, we used systemic infusions of sodium nitroprusside (NP) or hemorrhage (HEM), and hypertension was achieved by intravenous phenylephrine (PHENYL) or angiotensin II (AII). In rats that received continuous intracerebroventricular injections of morphine, intraperitoneal injections of naloxone precipitated behavioural signs of opioid withdrawal. Activated NTS neurons were identified by using a combined immunohistochemistry for Fos and NPFF, and neurons projecting to the PBN were determined with a retrograde tracer. HEM, administration of vasoactive drugs, and opiate withdrawal produced a very robust activation of NTS neurons. In NP and HEM groups, 25.6 ± 3.2% and 7.6 ± 1.3 % of NPFF neurons were activated, respectively. Lesser numbers of NPFF neurons were activated in the PHENYL (4.6 ± 1.6%) and AII (2.4 ± 0.8%) groups. However, following opiate withdrawal, virtually no Fos expression was observed in NPFF neurons. NPFF neurons activated during NP infusion constituted the largest number of cells projecting to the PBN. This study shows that NPFF neurons in NTS that project to the PBN respond selectively to NP as opposed to other cardiovascular challenges or opiate withdrawal. These data support an emerging and important role for NPFF in the context of central cardiovascular regulation. J. Comp. Neurol. 402:210–221, 1998. © 1998 Wiley‐Liss, Inc.