z-logo
Premium
Absence of plasticity of the frequency map in dorsal cochlear nucleus of adult cats after unilateral partial cochlear lesions
Author(s) -
Rajan R.,
Irvine D.R.F.
Publication year - 1998
Publication title -
journal of comparative neurology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.855
H-Index - 209
eISSN - 1096-9861
pISSN - 0021-9967
DOI - 10.1002/(sici)1096-9861(19980914)399:1<35::aid-cne3>3.0.co;2-b
Subject(s) - biology , dorsal cochlear nucleus , cats , cochlear nucleus , neuroscience , dorsum , nucleus , anatomy , plasticity , neuroplasticity , cochlea , audiology , medicine , physics , thermodynamics
In adult animals, lesions to parts of the auditory receptor organ, the cochlea, can produce plasticity of the topographic (cochleotopic) frequency map in primary auditory cortex and a restricted or patchy plasticity in the auditory midbrain. This effect is similar to the plasticity of topographic maps of the sensory surface seen in visual and somatosensory cortices after restricted damage to the appropriate receptor surface in these sensory systems. There is dispute about the extent to which subcortical effects contribute to cortical plasticity. Here, we have examined whether topographic map plasticity similar to that seen in the auditory cortex and the midbrain is observed in the adult auditory brainstem. When partial cochlear lesions were produced in the same manner as those that were produced in the cortex and midbrain studies, we found no plasticity of the frequency map in the dorsal cochlear nucleus (DCN). Small regions of the DCN that were deprived of their normal, most sensitive frequency (characteristic frequency; CF) input by the cochlear lesion appeared to have acquired new CFs at frequencies at or near the edge of the cochlear lesion. However, examination of thresholds at the new CFs established that the changes simply reflected the residue of prelesion input to those sites: The patterns of CF thresholds were very well predicted by simple calculations of the patterns that were expected from such residual input. The results of this study suggest that the DCN does not exhibit the type of plasticity that has been found in the auditory cortex and midbrain; therefore, it does not account for the changes in responsiveness observed in the higher level structures under similar experimental conditions. J. Comp. Neurol. 399:35–46, 1998. © 1998 Wiley‐Liss, Inc.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here