Premium
Patterns of connections between zona incerta and brainstem in rats
Author(s) -
Kolmac Christian I.,
Power Brian D.,
Mitrofanis John
Publication year - 1998
Publication title -
journal of comparative neurology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.855
H-Index - 209
eISSN - 1096-9861
pISSN - 0021-9967
DOI - 10.1002/(sici)1096-9861(19980713)396:4<544::aid-cne10>3.0.co;2-g
Subject(s) - zona incerta , superior colliculus , brainstem , inferior colliculus , pedunculopontine tegmental nucleus , dorsal raphe nucleus , neuroscience , biology , reticular formation , anatomy , thalamus , ventral tegmental area , paramedian pontine reticular formation , tegmentum , midbrain , nucleus , central nervous system , dopamine , biochemistry , receptor , serotonergic , serotonin , dopaminergic
Abstract To understand better the organisation of zona incerta of the thalamus, this study has examined the patterns of connections that this nucleus has with various nuclei of the brainstem. Injections of biotinylated dextran or cholera toxin subunit B were made into the dorsal raphe, midbrain reticular nucleus, pedunculopontine tegmental nucleus, periaqueductal grey matter, pontine reticular nucleus, substantia nigra, superior colliculus, and ventral tegmental area of Sprague‐Dawley rats, and their brains were processed by using standard tracer‐detection methods. In general, our results show that zona incerta forms the major zone in the thalamus where these ascending brainstem axons terminate and from which descending axons that travel back to these same brainstem centres originate. These incertal inputs and outputs are limited largely to a distinct sector of zona incerta, the dorsal sector. An exception to this pattern is evident in the incertal projection to the deep layers of the superior colliculus; this projection, unlike all of the others, arises from cells in the ventral sector of zona incerta. Our results also show little evidence for a well‐defined topography of projection between the brainstem and the zona incerta. For instance, small injections into each brainstem nucleus result in labelled terminals and in cells spread throughout much of the dorsal sector of zona incerta, with no local zone of concentration within the sector. Again, an exception to this pattern is seen in the incertal projection to the superior colliculus. This projection, unlike the others, shows a clear topographical organisation: A medial‐lateral shift in the injection site in the colliculus results in a lateral‐medial shift in the position of labelled cells in zona incerta. Curiously, even though the incertal projection to the colliculus appears to be mapped, the collicular projection back to zona incerta is not mapped. In conclusion, then, a number of brainstem nuclei (except for the deep collicular layers) have strong and overlapping connections within the same sector of zona incerta. This convergence of many functionally diverse brainstem afferents within zona incerta places this nucleus in a strategic position to sample the general activity of the brainstem and, perhaps, acts as a relay of this information to higher centres, such as the dorsal thalamic relay nuclei and the cerebral hemispheres. J. Comp. Neurol. 396:544–555, 1998. © 1998 Wiley‐Liss, Inc.