Premium
Intrinsic connections in the anterior dorsal ventricular ridge of the lizard psammodromus algirus
Author(s) -
Andreu Manuel J.,
Dávila José Carlos,
Real M. Ángeles,
Guirado Salvador
Publication year - 1996
Publication title -
journal of comparative neurology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.855
H-Index - 209
eISSN - 1096-9861
pISSN - 0021-9967
DOI - 10.1002/(sici)1096-9861(19960812)372:1<49::aid-cne5>3.0.co;2-m
Subject(s) - horseradish peroxidase , anatomy , dorsum , ridge , lizard , biology , injection site , axoplasmic transport , geology , neuroscience , medicine , biomedical engineering , paleontology , biochemistry , enzyme
We have studied the intrinsic connections of the anterior dorsal ventricular ridge (ADVR) in the lacertid lizard Psammodromus algirus by means of retrograde transport of horseradish peroxidase (HRP) and fluorescent labeling with the lipophilic carbocyanine dye DiI. We injected HRP into different regions in the ADVR arrayed in a medial‐to‐lateral sequence, with each consisting of three distinct superficial‐to‐deep zones. When HRP was injected into a given region, many labeled neurons (always located ipsilateral to the injection site) were found at all mediolateral regions of ADVR in locations rostrally distant from the injection site. DiI crystals were applied on different superficial‐to‐deep zones within each region. Two patterns could be recognized: DiI crystals applied on the periventricular (most superficial) zone resulted in a labeling of cells widely distributed throughout the ADVR independently of the mediolateral region of the application site, whereas DiI crystals applied on deeper zones resulted in a staining of cells mostly restricted to a narrow radial area. Results from both types of labeling confirm that the ADVR has a prominent radial component in its intrinsic organization, but they also demonstrate that some areas of the ADVR receive projections from distant, rostrally located neurons in every ipsilateral region of the ridge itself, which establishes a clear non‐radial component. This organization may have important functional properties with regard to a putative integration of different sensory modalities conveyed by thalamic afferent fibers to the ADVR. Last, we analyzed some evolutionary implications of our results. © 1996 Wiley‐Liss, Inc.