Premium
Immunohistochemical localization of neurotransmitters utilized by neurons in the rostral interstitial nucleus of the medial longitudinal fasciculus (riMLF) that project to the oculomotor and trochlear nuclei in the cat
Author(s) -
Spencer Robert F.,
Wang ShwuFen
Publication year - 1996
Publication title -
journal of comparative neurology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.855
H-Index - 209
eISSN - 1096-9861
pISSN - 0021-9967
DOI - 10.1002/(sici)1096-9861(19960226)366:1<134::aid-cne9>3.0.co;2-4
Subject(s) - medial longitudinal fasciculus , biology , neuroscience , oculomotor nucleus , nucleus , anatomy , fasciculus , midbrain , central nervous system , diffusion mri , medicine , fractional anisotropy , radiology , magnetic resonance imaging
The rostral interstitial nucleus of the medial longitudinal fasciculus (riMLF) contains excitatory and inhibitory burst neurons that are related to the control of vertical and torsional eye movements. In the present study, light microscopic examination of the immunohistochemical localization of amino acid neurotransmitters demonstrated that the riMLF in the cat contains overlapping populations of neurons that are immunoreactive to the putative inhibitory neurotransmitter γ‐aminobutyric acid (GABA) and the excitatory neurotransmitters glutamate and aspartate. By using a double‐labelling paradigm, GABA‐, glutamate‐, and aspartate‐immunoreactive neurons in the riMLF were retrogradely labelled by transport of horseradish peroxidase (HRP) from the oculomotor and trochlear nuclei. Electron microscopy showed that the oculomotor and trochlear nuclei contain synaptic endings that are immunoreactive to GABA, glutamate, or aspartate. Each neurotransmitter‐specific population of synaptic endings has distinctive ultrastructural and synaptic features. Synaptic endings in the oculomotor and trochlear nuclei that are anterogradely labelled by transport of biocytin from the riMLF are immunoreactive to GABA, glutamate, or aspartate. Taken together, the findings from these complimentary retrograde and anterograde double‐labelling studies provide rather conclusive evidence that GABA is the inhibitory neurotransmitter, and glutamate and aspartate are the excitatory neurotransmitters, utilized by premotor neurons in the riMLF that are related to the control of vertical saccadic eye movements. © 1996 Wiley‐Liss, Inc.