Premium
Relationships between the morphology and function of gastric and intestinal distention‐sensitive neurons in the dorsal motor nucleus of the vagus
Author(s) -
Fogel Ronald,
Zhang Xueguo,
Renehan William E.
Publication year - 1996
Publication title -
journal of comparative neurology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.855
H-Index - 209
eISSN - 1096-9861
pISSN - 0021-9967
DOI - 10.1002/(sici)1096-9861(19960101)364:1<78::aid-cne7>3.0.co;2-p
Subject(s) - dorsal motor nucleus , duodenum , biology , stomach , vagus nerve , neuron , brainstem , stimulation , anatomy , gastrointestinal function , motor neuron , neuroscience , medicine , biochemistry , spinal cord
The activity of vagal motor neurons is influenced by sensory information transmitted to the brainstem. In particular, there is evidence that distention of the stomach increases activity of motor neurons in the dorsal vagal motor nucleus, whereas distention of the duodenum, small intestine, and colon reduces neuron firing. In this study, we determined 1) the response of vagal motor neurons to distention of the stomach and duodenum and 2) whether the response properties were associated with specific morphological features. Using the single‐cell recording and iontophoretic injection technique, we identified four groups of vagal motor neurons affected by gastric and/or duodenal distention. Group 1 neurons responded to either gastric or duodenal stimulation. Neurons in groups 2, 3, and 4 were affected by both gastric and duodenal distention. Group 2 neurons were excited by duodenal distention and were inhibited by gastric distention. Group 3 neurons were inhibited by duodenal distention and were excited by gastric distention. Most neurons belonged to group 4. Neurons in this group were inhibited by both gastric and duodenal distention. Our analyses revealed that the neurons affected by both stimuli had distinctive structural features. Neurons in group 2 had the largest somata, the most dendritic branches, and the greatest cell surface area. Neurons in group 3 were the smallest and had the shortest dendritic length. In addition, we were able to demonstrate that the neurons in group 4 had a smaller total dendritic length and a smaller cell volume than neurons in group 2 and had more dendritic branch segments than neurons in group 3. These results suggest that morphological features are associated with specific response properties of vagal motor neurons. © 1996 Wiley‐Liss, Inc.