Premium
UNCOUPLED FREQUENCY RATIO IN ASYMMETRIC BUILDINGS
Author(s) -
ANNIGERI S.,
MITTAL A. K.,
JAIN A. K.
Publication year - 1996
Publication title -
earthquake engineering and structural dynamics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.218
H-Index - 127
eISSN - 1096-9845
pISSN - 0098-8847
DOI - 10.1002/(sici)1096-9845(199608)25:8<871::aid-eqe593>3.0.co;2-3
Subject(s) - eccentricity (behavior) , structural engineering , ductility (earth science) , eccentric , basis (linear algebra) , standard deviation , mathematics , physics , engineering , statistics , geometry , thermodynamics , creep , political science , law
Structural eccentricity and Uncoupled Frequency Ratio (UFR) are two system parameters that strongly influence the elastic response of eccentric structures. The opinions differ regarding their influence on the inelastic response. Different investigators arrived at contradictory conclusions on the influence of uncoupled frequency ratio. The reasons for these contradictions are the use of different definitions and different models in the inelastic studies. In this paper, three possible definitions of the uncoupled frequency ratio are identified, and their influence is studied on the inelastic response. An ensemble of 10 real earthquakes of 20 s duration is used. The response is measured in terms of the mean plus one standard deviation of the ductility ratio. The value of the UFR obtained by each of the three possible definitions is not always admissible. It is concluded that the inelastic response depends upon the eccentric system, definition employed for the UFR, time period of the eccentric systems and the basis of strength distribution among the various lateral elements.