Premium
Rill hydraulics on a semiarid hillslope, southern Arizona
Author(s) -
Abrahams Athol D.,
Li Gang,
Parsons Anthony J.
Publication year - 1996
Publication title -
earth surface processes and landforms
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.294
H-Index - 127
eISSN - 1096-9837
pISSN - 0197-9337
DOI - 10.1002/(sici)1096-9837(199601)21:1<35::aid-esp539>3.0.co;2-t
Subject(s) - rill , surface runoff , loam , hydrology (agriculture) , geology , soil water , hydraulics , flow (mathematics) , soil science , geometry , mathematics , geotechnical engineering , ecology , aerospace engineering , engineering , biology
Seventy field experiments were conducted in seven rills located on a semiarid rangeland hillslope underlain by gravelly soils at Walnut Gulch, Arizona. The rills, which are characterized by wide, shallow cross‐sections and gravel‐covered beds, have mean at‐a‐station hydraulic geometry exponents of b = 0·33, f = 0·34 and m = 0·33. Although the differences between these values and typical values of b = 0·30, f = 0·40 and m = 0·30 for cropland rills are not statistically significant, they are thought to be real, as cropland rills often have more rectangular cross‐sections and steeper sides than the rangeland rills under study. For rills formed in silty loamy soils, Govers developed an empirical relation between mean flow velocity and discharge. Emphasizing the generality of this relation, he suggested that it may be used as a simple means of routing runoff through rills. He also noted that this relation appeared to be unaffected by either slope or soil materials. The present data represent rills underlain by coarser and somewhat more varied gravel‐rich soils. These data do not conform to Govers' relation, and a multiple regression analysis reveals that slope and soil materials, either directly or indirectly through bed roughness, exert almost as much influence on flow velocity as does discharge. Three alternative methods are developed for predicting flow velocity in the rills under study. All three methods give good results with the largest root mean square deviation being 3·115 cm s −1 .