z-logo
Premium
Alginate/Chitosan Complex Fibers Reinforcement and Their Mechanical Transition Continuum With Water Uptake Increasing
Author(s) -
Huang Hao,
Liu Zexin,
Jian Hanxin,
Yao Yuan,
Tan Wenjuan,
Yang Shuguang
Publication year - 2025
Publication title -
macromolecular rapid communications
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.348
H-Index - 154
eISSN - 1521-3927
pISSN - 1022-1336
DOI - 10.1002/marc.202400735
Subject(s) - polyelectrolyte , materials science , covalent bond , chitosan , fiber , dynamic mechanical analysis , aqueous solution , modulus , composite material , glass transition , relaxation (psychology) , chemical engineering , polymer , chemistry , organic chemistry , engineering , psychology , social psychology
Abstract Living tissues span a remarkable spectrum of modulus ranging from the level of Pa to GPa in a water‐rich environment. Constructing soft and hard materials that match the mechanics of tissues and researching mechanical transition in water, are beneficial for their biological applications. Here, using polyelectrolyte complex fiber as a model system and reinforcing the fiber by stepwisely introducing additional coordination and covalent bonds, this investigated that the water effect on mechanical transition behaviors. Alginate/chitosan fiber (AC fiber) has a single electrostatic bond and shows continuous mechanical transition containing a glassy state, rubbery state, and terminal relaxation (initial modulus lower than 10 MPa) in aqueous solution. Alginate/chitosan/calcium fiber (ACC fiber) has both electrostatic and coordination bonds, which shows the behavior of hard rubber (initial modulus 100 MPa) when water reaches equilibrium. Alginate/chitosan/calcium/polydopamine fiber (ACCP fiber) with triple bonds, including electrostatic, coordination, and covalent bonds, exhibits the behavior like ductile plastics in aqueous solution (initial modulus 1000 MPa). This work not only provides important insight into the toughening mechanism of polyelectrolyte complexes in water but also contributes to the preparation of tissue adaptive implantations.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom